Back to Article
Data Screening
Download Source

Data Screening

Authors

Steve Purves

Charlotte Wickham

In [1]:
import pandas as pd
import matplotlib.pyplot as plt

Import la-palma.csv - a clean subset of catalogoComunSV_1663233588717.csv:

In [2]:
df = pd.read_csv('la-palma.csv')
df['DateTime'] = pd.to_datetime(df['DateTime'])
df = df.sort_values(by=['DateTime'], ascending=True)
df.head()
Longitude Latitude Depth(km) Magnitude DateTime
11346 -17.8349 28.5346 26.0 1.6 2017-03-09 23:44:06+00:00
11343 -17.8459 28.5491 27.0 2.0 2017-03-10 00:16:10+00:00
11344 -17.8863 28.5008 20.0 2.1 2017-03-10 00:16:11+00:00
11345 -17.8657 28.5204 30.0 1.6 2017-03-10 03:20:26+00:00
11342 -17.7156 28.5985 0.0 1.6 2017-08-21 02:06:55+00:00
In [3]:
df.describe()
Longitude Latitude Depth(km) Magnitude
count 11347.000000 11347.000000 11347.000000 11347.000000
mean -17.844062 28.568893 14.089345 2.432423
std 0.027345 0.021899 8.624787 0.705282
min -17.995800 28.310200 0.000000 0.200000
25% -17.854100 28.558000 10.100000 1.900000
50% -17.838700 28.564000 11.300000 2.600000
75% -17.829700 28.574300 13.900000 2.900000
max -17.705700 28.697800 46.900000 5.100000
In [4]:
df.plot.scatter(x="Longitude", y="Latitude", figsize=(12,12), grid="on");

Filter

Also some rows seem to be missing depth measurements, (see differences in the count for columns above) - take only rows with valid depths

In [5]:
df = df[df['Depth(km)'].notna()]
df.describe()
Longitude Latitude Depth(km) Magnitude
count 11347.000000 11347.000000 11347.000000 11347.000000
mean -17.844062 28.568893 14.089345 2.432423
std 0.027345 0.021899 8.624787 0.705282
min -17.995800 28.310200 0.000000 0.200000
25% -17.854100 28.558000 10.100000 1.900000
50% -17.838700 28.564000 11.300000 2.600000
75% -17.829700 28.574300 13.900000 2.900000
max -17.705700 28.697800 46.900000 5.100000
In [6]:
plt.figure(figsize=(20,6))
plt.subplot(1,3,1)
df["Latitude"].plot.hist(bins=20, density=True)
plt.subplot(1,3,2)
df["Longitude"].plot.hist(bins=20, density=True)
plt.subplot(1,3,3)
df["Depth(km)"].plot.hist(bins=50, density=True)

Spatial Plot

Scatter plot the spatial locations of events

In [7]:
#| label: fig-spatial-plot
#| fig-cap: Locations of earthquakes on La Palma since 2017.
#| fig-alt: A scatterplot of earthquake locations plotting latitude against longitude.
from matplotlib import colormaps
cmap = colormaps['viridis_r']
ax = df.plot.scatter(x="Longitude", y="Latitude", 
                     s=47-df["Depth(km)"], c=df["Magnitude"], 
                     figsize=(12,10), grid="on", cmap=cmap)
colorbar = ax.collections[0].colorbar
colorbar.set_label("Magnitude")

plt.show()
A scatterplot of earthquake locations plotting latitude against longitude.
Locations of earthquakes on La Palma since 2017.

Timeline Plot

Scatter plot the event time series and look for any quantization issues. Have times & dates been loaded correctly?

ax = df.plot.scatter(x=‘DateTime’, y=‘Depth(km)’, figsize=(20,8)) ax.set_ylim(50,0);